Mystery of how moon formed could be solved at last

Evidence exists that make astronomers believe that the Earth and the Moon were created when a Mars09/14/2009sized object slammed into the early proto09/14/2009earth, about 4.6 billion years ago. Recent findings suggest that heavier metals like gold, platinum, palladium and other iron09/14/2009loving elements found in Earth's and the Moon's crusts and mantles came from similar, but much smaller impacts at the final stage of formation.
Four billion years ago, a Mars-sized object slammed into Earth... but what happened next? (Getty)

The moon formed after a collision 4.5 billion years ago between the young Earth and a Mars-sized object, called Theia – but what happened next?

Scientists have theorised that a disc of debris slowly formed into our moon, but a new supercomputer simulation suggests that instead, a giant moon-like chunk of rock was immediately in orbit around Earth.

The new finding would make the composition of the moon rocks returned by astronauts make more sense.

Scientists from Durham University’s Institute for Computational Cosmology used the most detailed supercomputer simulations yet – and it could also help us understand what is inside the moon.

Co-author of the study, Vincent Eke, said: “This formation route could help explain the similarity in isotopic composition between the lunar rocks returned by the Apollo astronauts and Earth’s mantle.

“There may also be observable consequences for the thickness of the lunar crust, which would allow us to pin down further the type of collision that took place.”

Read more: Life on the moon? It could have happened billions of years ago

The researchers say that if much of the moon formed immediately following the giant impact, then this could also mean that less of the moon became molten during formation than in the standard theories where the moon grew within a debris disk around Earth.

These theories should predict different internal structures for the moon.

The simulations also showed that even when a satellite passes so close to the Earth that it might be expected to be torn apart by the “tidal forces” from Earth’s gravity, the satellite is not destroyed.

Instead, it’s pushed onto a wider orbit, safe from future destruction.

The researchers simulated hundreds of different impacts, varying the angle and speed of the collision as well as the masses and spins of the two colliding bodies in their search for scenarios that could explain the present-day Earth-moon system.

These calculations were performed using the SWIFT open-source simulation code, run on the DiRAC Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.

Read more: Europe to start mining the surface of the moon

The extra computational power revealed that lower-resolution simulations can miss out on important aspects of large-scale collisions, allowing researchers to discover features that weren’t accessible for previous studies.

Only the high-resolution simulations produced the moon-like satellite, and the extra detail showed how its outer layers were richer in material originating from the Earth.

Lead researcher of the study, Jacob Kegerreis, said: "This opens up a whole new range of possible starting places for the moon’s evolution. We went into this project not knowing exactly what the outcomes of these very high-resolution simulations would be. So, on top of the big eye-opener that standard resolutions can give you wrong answers, it was extra exciting that the new results could include a tantalisingly Moon-like satellite in orbit."

Most theories create the moon by gradual accumulation of the debris from this impact. However, this has been challenged by measurements of lunar rocks showing their composition is like that of Earth’s mantle, while the impact produces debris that comes mostly from Theia.

This immediate-satellite scenario opens up new possibilities for the initial lunar orbit as well as the predicted composition and internal structure of the moon.

The many upcoming lunar missions should reveal new clues about what kind of giant impact led to the moon, which in turn will tell us about the history of Earth itself.

Watch: Space Rover tested out in Milton Keynes quarry