Real Star Wars: Believe It Or Not, America Wanted Its Very Own 'Death Star'

Steve Weintz

Key point: A generation after the program ostensibly wound down, megawatt lasers and railguns have arrived.

A long time ago in an era much like ours, the United States poured billions into its “Star Wars” missile defense program. What those billions actually bought is still highly classified, so much so that we know very little about the various exotic space weapons conceived during the late Cold War.

One of those concepts—“Have Sting”—would have been the biggest gun in the solar system . . . had it ever been made.

Aerospace historian Scott Lowther has published some excellent diagrams of Have Sting, a proposed orbital railgun the size of the International Space Station. Having studied a General Electric report on the project, Lowther deduced a fair amount about the cannon’s characteristics.

“This vehicle appears to have everything such a system would need, from power to attitude control, sensors to thermal control,” Lowther said.

In a conventional gun, a chemical propellant expands and shoves a projectile down a long metal tube. In a railgun, pulsed electromagnetic fields replace the propellant and accelerate a conductive projectile to extreme speeds.

The pulsed fields generate along a pair of rails—hence the name—and the projectile travels down the rails like a surfer in a slot.

The longer the rails and the more electrical power the weapon can generate, the faster the projectile flies. And Have Sting’s projectiles might have generated velocities as high as 35,000 miles per hour. At those speeds—equal to a reentering spacecraft or falling meteor—a projectile as small as a can of beer could vaporize a hardened warhead.

The original report gave no dimensions for the vehicle, but its reactor—a known design—gave Lowther something to work with. A 265-foot-long truss would have supported Have Sting’s electromagnetic accelerator, a nuclear reactor, a cryogenic tank farm and phased-array radars as big as circus tents.

General Electric’s SP-100 reactor would have generated 100 kilowatts—enough for “peacetime” power and station-keeping. During wartime, the cannon would need even more juice. A multi-megawatt reactor would be too heavy to fly … so the designers turned to rocket science.

Read the original article.